BESOIN , FONCTION D'USAGE, CAPTEUR

Identifier la fonction d'usage et les fonctions techniques d'un objet

1. BESOINS

1.1. Ecrire la définition :

L'homme à satisfaire comme par exemple : se loger, se nourrir, se distraire... pour satisfaire ses besoin l'homme conçoit .

1.2 Déterminer le besoin satisfait par chacun de ses objets techniques

BESOIN DE

5255111 52

2 FONCTION D'USAGE.

2.1. Ecrire la définition :

La fonction d'usage d'un produit est la réponse à la question : « »

Elle ne dépend pas du goût des utilisateurs, elle est jugée de la même manière par tous

2.2. Déterminer la fonction d'usage de ses objets techniques

FONCTION D'USAGE

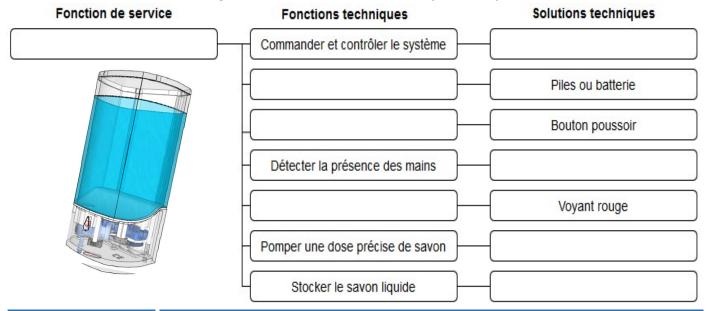
FONCTION D'USAGE

3. FONCTION ET SOLUTION TECHNIQUE:

3.1. Compléter les définitions suivantes :

Les fonctions techniques d'un objet permettent d'assurer la

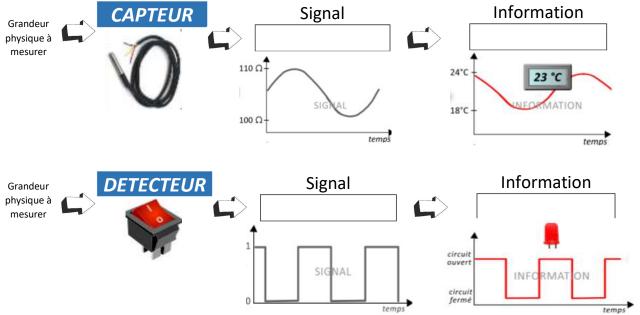
Exemple: Propulser, Diriger, Freiner...


Les fonctions techniques sont réalisées par des

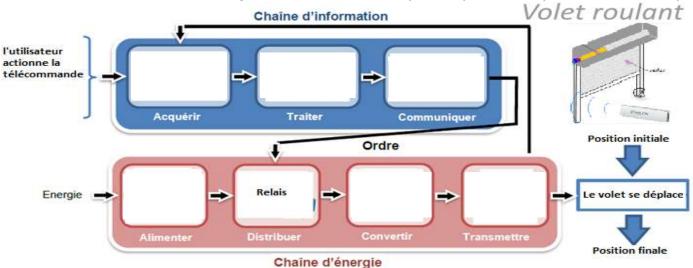
3.2. Compléter le diagramme FAST du vélo

retenir.	

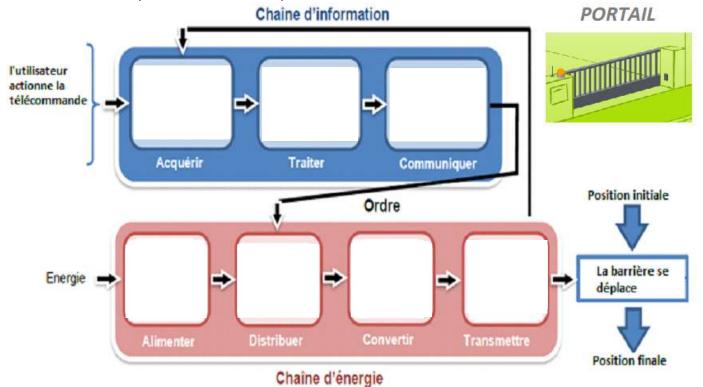
3.3. Réaliser les exercices FAST en ligne : Le distributeur de savon, recopier vos réponses ci-dessous


PREREOUIS

CHAINE D'INFORMATION et CHAINE D'ENERGIE

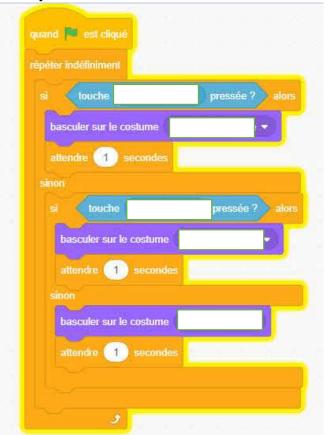

Identifier les flux d'information sur un objet et décrire les transformations qui s'opèrent.

4. CHAINE D'INFORMATION et CHAINE D'ENERGIE


4.1 Consulter l'animation et compléter les figures ci-dessous :

4.2 Consulter l'animation chaîne d'énergie et chaîne d'information, puis compléter l'exemple du volet automatique.

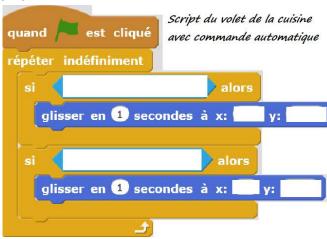
- **4.3** Compléter la **chaîne d'information** de la maquette les termes suivants : Antenne, Automate, Commutateur, Photocellule, Feu clignotant, Fils électriques
- **4.4** Compléter la **chaîne d'énergie** d'un portail automatique avec les termes suivants : Pignon, Crémaillère, Raccordement électrique, Moteur, Fils électrique, Relais


PREREQUIS

PROGRAMMATION / Réseau

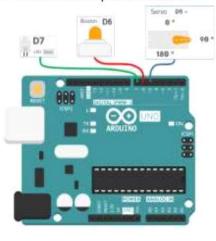
Identifier les flux d'information sur un objet et décrire les transformations qui s'opèrent.

5. PROGRAMMATION


5.1 Objectifs : Simulation de commande de direction d'une voiture radiocommandée

6.1 Ouvrir la scène « volets automatiques ».

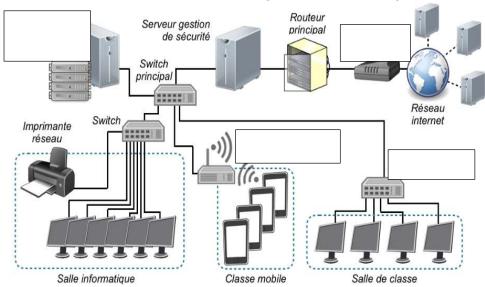
6.2 Commande centralisée : En vous aidant du script du volet de la chambre, écrire les programmes permettant de fermer tous les volets avec la touche « F » et ouvrir tous les volets avec la touche « O »



6.3 Programmation pour piloter un système : Lancer la simulation et réaliser le travail demandé.

<u>Lancer la simulation</u> et réaliser le travail demandé

- 1. Au démarrage la LED en D7 clignote 4 fois à intervalles de 200ms
- 2. On répète, si le BP en D6 est activé alors le Servo-Moteur en D5 se positionne à 0° sinon à 90°
- 3. La LED
- en **D7** doit **s'allumer** quand le Servo-Moteur en **D5 est à 0°** et **s'éteindre** quand il est à **90°**



7. ARCHITECTURE D'UN RESEAU

Combien ont été reçus ?

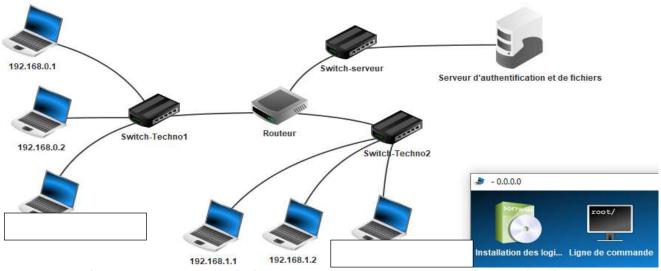
7.1. A l'aide l'animation, Le réseau du collège et des vidéos, compléter les termes manquant

permet de:

- Gérer les autorisations des utilisateurs
- Stocker les données des utilisateurs
- Gérer la sécurité des données

(commutateur) permet de relier plusieurs équipements au sein du réseau local

permet de relier plusieurs réseaux locaux ensemble


permet une connexion à internet.

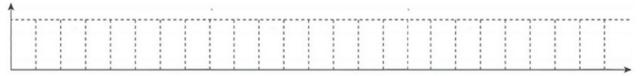
Internet est
Pour identifier un poste informatique (ou objet connecté) sur un réseau on utilise son
7.2. Quelle est l'adresse IP de l'ordinateur que vous utilisez ? (
Adresse IP :
7.3. Tester la connexion avec l'ordinateur du professeur (
Combien de paquets ont été envoyés ?

TRAME DE DONNEES / CONVERSION BINAIRE DECIMALE

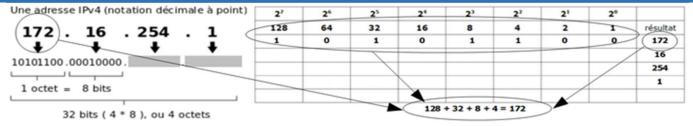
Utiliser les unités de stockage, connaître le système binaire, le bit et l'octet

8.1. Compléter les adresses IP manquantes

- 8.2. Un ping entre l'ordinateur 192.168.0.1 et l'ordinateur 192.168.1.2 renvoie un résultat négatif
- 8.3. Ouvrir le fichier Filius, identifier le problème, trouver une solution, montrer le résultat du ping au professeur
- 8.4. Quel était le problème rencontré ?


9. Trame de données

9.1. Indiquer ensuite aux bons endroits sur ce chronogramme les termes : Temps, Forte, Lumière, Faible et les états logiques 0 et 1



9.2. Quelle est la trame de données binaires transmise ? ATTENTION AU SENS DE LECTURE !!!!

9.3. Dessiner sur le **chronogramme, ci-dessous,** la **trame de données binaires à transmettre** suivante : **1001101000011100101**

En vous appuyant sur l'exemple ci-dessus, convertir en binaire l'adresse IP 172.16.254.1

172	•	16	254	•	1
10101100					

Convertir l'adresse IP : 180.13.72.2 en binaire.

180	13	72	2